
Applied Energy 149 (2015) 415–431
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier .com/locate /apenergy
A model calibration framework for simultaneous multi-level building
energy simulation
http://dx.doi.org/10.1016/j.apenergy.2015.03.048
0306-2619/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 (213) 740 4383.
E-mail addresses: zhengyan@usc.edu (Z. Yang), becerik@usc.edu (B. Becerik-Gerber).

1 Tel.: +1 (323) 868 1913.
Zheng Yang a,1, Burcin Becerik-Gerber b,⇑
a Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Avenue, Kaprielian Hall 217, Los Angeles, CA 90089-2531,
United States
b Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Avenue, Kaprielian Hall 224C, Los Angeles, CA 90089-2531,
United States

h i g h l i g h t s

� Introduce a framework for multiple levels of building energy simulation calibration.
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� Use evidence and statistical learning to build energy model and reduce discrepancy.
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Energy simulation, the virtual representation and reproduction of energy processes for an entire building
or a specific space, could assist building professionals with identifying relatively optimal energy con-
servation measures (ECMs). A review of current work revealed that methods for achieving simultaneous
high accuracies in different levels of simulations, such as building level and zone level, have not been sys-
tematically explored, especially when there are several zones and multiple HVAC units in a building.
Therefore, the objective of this paper is to introduce and validate a novel framework that can calibrate
a model with high accuracies at multiple levels. In order to evaluate the performance of the calibration
framework, we simulated HVAC-related energy consumption at the building level, at the ECM level and at
the zone level. The simulation results were compared with the measured HVAC-related energy consump-
tion. Our findings showed that MBE and CV (RMSE) were below 8.5% and 13.5%, respectively, for all three
levels of energy simulation, demonstrating that the proposed framework could accurately simulate the
building energy process at multiple levels. In addition, in order to estimate the potential energy efficiency
improvements when different ECMs are implemented, the model has to be robust to the changes result-
ing from the building being operated under different control strategies. Mixed energy ground truths from
two ECMs were used to calibrate the energy model. The results demonstrated that the model performed
consistently well for both ECMs. Specific contributions of the study presented in this paper are the intro-
duction of a novel calibration framework for multi-level simulation calibration, and improvements to the
robustness of the calibrated model for different ECMs.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Buildings account for one-third of the total global energy con-
sumption [1]. In the commercial building sector, more than 80%
of building energy consumption occurs during the operation phase
[2] to maintain indoor environments and provide building-based
services. By analyzing the differences between actual energy con-
sumed and energy required to satisfy building operation demands,
it is found that up to 30% of thermal energy and 13% of electrical
energy could be saved if energy conservation measures (ECMs)
were to be adopted in office buildings [3]. Simulation, the virtual
representation and reproduction of building energy process, is
widely used for integrating heat and mass transfer, environmental
data, and load-HVAC interactions, as well as generating periodical

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2015.03.048&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2015.03.048
mailto:zhengyan@usc.edu
mailto:becerik@usc.edu
http://dx.doi.org/10.1016/j.apenergy.2015.03.048
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


416 Z. Yang, B. Becerik-Gerber / Applied Energy 149 (2015) 415–431
energy performance estimates for building systems, such as HVAC
(heating, cooling and air conditioning) systems [4–6]. Compared to
field experiment, simulation has several advantages: (1) sim-
ulation allows analysts to evaluate the system performances when
field experiments are infeasible; (2) simulation facilitates the
investigation of various ECMs before being implemented; (3) sim-
ulation is less expensive and less time consuming; (4) simulation
can be reversed after implemented; (5) simulation could control
factors that cannot be controlled in a field experiment (e.g.,
weather conditions); (6) simulation is non-intrusive for a building
and its occupants; (7) simulation outputs different performance
indicators, which are hard to be metered in field experiments;
and (8) simulation makes it easier for analysts to interpret results.

Despite its advantages, expected energy savings from relatively
optimal ECMs reported in simulations do not usually match those
measured in actual buildings due to the discrepancies between
actual buildings and their virtual representations. Empirical stud-
ies have revealed noticeable differences between simulation
results and actual measurements [7,8]. Simulated results some-
times deviate significantly from the measured ones [9]. Only if a
simulation model can generate outcomes that closely match the
measured energy performance of a building, it has potential to
be reliable and representative in its ability to accurately estimate
energy savings from different ECMs. The accuracy of a simulation
model largely depends on how well the outputs are compatible
with available measured data, which in turn depends on how accu-
rate the inputs could empirically reproduce the properties of a
building the model simulates [10].

In general, energy model calibration is an over-parameterized
and context-related process. The model calibration is commonly
defined as an inverse approximation because of the need for tuning
necessary inputs to reconcile the outputs by a simulation program,
as closely as possible to the measured energy data. It is over-
parameterized because of the large number of independent and
interdependent input parameters to be specified, which represent
the complex correlations and dynamic interactions among envel-
ope thermal conditions, HVAC responses, exterior impacts (e.g.,
solar radiation) and interior impacts (e.g., light related heat gains).
They cannot always be determined by available evidence in cali-
bration. Two sources are recognized to be generally responsible
for discrepancies in building energy simulation. One is the uncer-
tainty in input parameters and the other one is the simplification
of building and building systems, assumptions of thermal pro-
cesses, and algorithmic differences used in simulation programs
[11,12]. Since the second source of error depends on the simulation
program chosen, this paper focuses on the first source of error:
reducing the discrepancies in outputs caused by the uncertainty
of input parameters. Quality of the calibration is limited by the
determination of input parameter values, which represent the
building as abstraction in a simulation. Therefore, simulation is a
context-related process.

Current calibration methods focus on single-level simulation
accuracy. Single level of calibration considers the accuracy for
one scale of output in an energy simulation, such as building level
gas consumption or zone level electricity consumption. Since there
are a large number of input parameters but few output variables
(depending on the required resolution and the length of sim-
ulation), it is usually relatively easy to approximate high accuracy
for a single level of simulation. However, simultaneous accuracy
for multiple levels of simulation is crucial. For example, building
level accuracy could provide an insight about overall energy per-
formance of a building and building systems; ECM level accuracy
could represent the direct energy consequences of applying a cer-
tain type of energy conservation measure, and is important for
guiding further research and practice towards more energy-effi-
cient controls; zone level accuracy could decompose energy
consumption by a zone that is the control unit for heat balance
and load calculations, and closely relates to occupant comfort
and building system functionality. Although different levels of
energy consumptions are interconnected and they reflect the
approximation of simulation results to the measured energy per-
formance, accurate simulation of single level does not necessarily
mean accurate simulations for other levels, especially when there
are several zones and multiple HVAC units in a building [13,14].
It becomes more difficult to achieve high accuracies for multiple
levels of simulations simultaneously as the complexity increases
due to the complicated and dynamic correlations and interactions
among envelope thermal conditions, HVAC responses, exterior
impacts and interior impacts. In sum, the research towards study-
ing energy-efficient measures in a building influences more than
one level of energy performance and might require other levels
of energy simulation for analysis and exploration [15]. Therefore,
a multi-level calibration framework is necessary to achieve multi-
ple calibration objectives simultaneously.

This paper introduces and validates a multi-level energy model
calibration framework for simultaneously calibrating energy
model at multiple levels. To estimate potential energy savings
when different ECMs are evaluated, the model has to be robust
to the changes resulting from the building being operated differ-
ently. This paper uses ground truth energy data from imple-
mentations of two ECMs to calibrate the model and
demonstrates the model has consistent performance for either
ECM. The framework creates a classification schema for parameters
(definitions and categorizations of parameters are introduced in
Section 3) and integrates the statistical learning based calibration
and analytic calibration. It comprises five steps: (1) initial energy
modeling using available evidence, (2) sensitivity analysis to rank
the influence of parameters, (3) parameter estimation for deter-
mining the values of estimable parameters, (4) discrepancy analy-
sis to analyze the sources of discrepancies, and (5) multi-objective
discrepancy minimization. The framework is evaluated using a
case study. Simulated HVAC-related energy consumption is com-
pared with the measured HVAC-related energy consumption to
validate the proposed calibration framework. The rest of the paper
is organized as follows: Section 2 briefly describes the motivation
for the proposed calibration framework and discusses the tradi-
tional calibration approaches and their disadvantages; Section 3
outlines the objectives and methodology of the paper. Section 4
describes how the case study model is calibrated using the pro-
posed framework, and Section 5 analyzes the case study results
and discusses the limitations. Finally, Section 6 concludes the
paper.
2. Building energy model calibration

Building simulation could be error-prone because of the com-
plex correlations and dynamic changes in envelope thermal condi-
tions, exterior impacts (e.g., solar radiation) and interior impacts
(e.g., light related heat gain), as well as because of the large num-
ber of independent and interdependent input parameters, which
cannot be all obtained empirically [11]. The time and effort
required to collect data and determine input parameters make
energy model calibration a challenge for large-scale applications
[16].

Considering the fact that ECMs are specifically designed for
appointed buildings, each building has to be modeled and cali-
brated individually. Using typical/standard values for input
parameters or estimating energy performance based on similar
building data does not provide accurate energy model calibration
for another specific building [17]. A review of current calibration
works has revealed that there is no generally adopted
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methodology, by which building energy models should be cali-
brated [18,19] due to the different requirements for simulations,
different purposes of simulations, different configurations of build-
ing systems, different available evidence and different levels of
knowledge and experience of analysts. Below is a review of major
calibration approaches found in recent literature.

Statistical learning based calibration methods apply a simple or
multivariable mathematical/analytical analysis to find relation-
ships among actual measurements, simulation outputs and input
parameters. A simple way to express a statistical relationship is
by an objective function or a penalty function [20,21], in which
input parameters or output variables are assigned certain weights,
and a mathematical/analytical algorithm is then used to map them
with actual energy measurements. Input parameters could be
either static parameters (e.g., chiller coefficient of performance)
or dynamic parameters (e.g., room temperature). The weights are
determined using measured data, such that the corresponding for-
mulation is able to predict acceptable energy performance with no
direct link to physical building properties [22]. Statistical relation-
ships could also be established by machine learning techniques
[23–25]. Once the learning models are built and tuned, they can
be applied to process new model inputs and estimate correspond-
ing energy performances. Supervised machine learning techniques,
such as Artificial Neural Network (ANN) [26] and fuzzy logic model
[27], which are capable of modeling complex relationships
between inputs and outputs, are commonly used to learn sophisti-
cated non-linear and joint effects of input parameters [28]. In view
of the large number of parameters to be considered, learning
model training is computationally expensive and may not provide
acceptable solutions because of overfitting (overspecialization and
cannot be generalizable). In addition, energy model calibration is a
case-by-case process; machine-learning models generated from
reference buildings may not be applicable to other buildings, even
they might be in the same climate.

In general, statistical learning based calibration requires a short
development time and provides an accurate estimation of energy
consequences given the availability of prior training data.
However, it is data-driven and requires extensive data for retrain-
ing if there are any system operational changes. Moreover, a sta-
tistical learning based calibration method abstracts the
calibration process to a pure mathematical fitting problem, which
may not be able to represent the real function or contribution of
each input parameter to building energy performance. Even
though the net effect of all parameters can generate outputs that
closely match the measured energy performances, the individual
parameters may still be incorrectly or unreasonably tuned, thus
it is difficult to simultaneously achieve high simulation accuracies
at multiple levels.

Analytical calibration methods use available evidence, such as
zone size and window height, to iteratively adjust input parame-
ters based on analysis, experiences and trial until simulation out-
puts match actual measurements. This calibration method is
mostly manual, iterative and pragmatic intervention, which
requires significant time, effort and expertise [29,30], however it
is capable of modeling a building and building systems under pre-
viously unobserved conditions. Standard steps (e.g., simulation
plan, data collection, evidence input, calibration, model refine-
ment) have been widely used in previous research [31–33], and
the process typically requires conducting interviews, collecting
drawings, specifications, field measurements, logs, system manuals
and system settings [34–36]. To improve model calibration, using
continuous field measurements and observations, has been pro-
posed and the calibration accuracy was significantly increased
[37]. Sensors could also be installed to get the necessary informa-
tion for calibration [38]. For parameters that cannot be determined
directly from evidence, expert knowledge and experience are
required. Most simulation exercises employ heuristic methods
for parameter estimation. Specifically, an expert first selects a set
of parameters that are likely to significantly influence the outputs
of a simulation model on a building-to-building basis [10].
Different combinations of values are then tested until differences
between the simulated and measured energy performance are rea-
sonably small.

Analytical calibration methods require a trial and error process,
where there are large numbers of parameters. It may not be reli-
able as the complexity of the simulated building increases. Even
if each input parameter is empirically validated, the simulation
output of a building may still be far from measured building per-
formance, since buildings do not always behave as initially
designed. Continuous updates for input parameters are required
for calibration. Quality of the analytic calibration model relies
heavily on the subjective judgment of an analyst on building sys-
tems and thermal processes, especially in the choice of parameters
to be calibrated, quantification of their prior distribution, best-
guesses of parameter estimation, and interrelations among
parameters. High accuracy at multiple levels is difficult to be
achieved solely with this method.

More recently, an integration of analytical calibration methods
and sensitivity analysis or analytical optimization approaches has
been introduced [39]. Sensitivity analysis is widely used to reduce
the number of parameters to be adjusted [40]. A matrix of possible
values of each input parameters is created using sampling algo-
rithms, and imported to a quasi-deterministic approach, such as
the Monte-Carlo (MC) method. After thousands of simulation trials
by a commercial simulation program a set of promising vector
solutions is found rather than a single one based on goodness-of-
fit [41,42], or an analytic meta-model is obtained to minimize
the difference between simulated and measured data [43].
However, the performances of integrated calibration methods
highly depend on the possibility that the solution exists in the
trials.

Integrated calibration is computationally efficient and could
provide comparable results [11]. Usually a group of solutions are
selected with actual energy measurement being within a range
of the values simulated. However, there is no work to date that
specifically focuses on a solution with high accuracy for multiple
levels. Sometimes zone level energy consumption is simply added
up to represent building level or system level energy consumption
[13,14]. These sequential calibrations cannot achieve simultaneous
high accuracy for multi-level simulations when there are several
zones and multiple HVAC units.
3. Objectives and calibration methodology

An energy model that has high simulation accuracy at multiple
levels could provide reliable estimation of energy consequences of
different ECMs (energy control measures) in a building. Therefore,
the first objective of this study is to introduce a multi-level calibra-
tion framework for building energy simulation. In addition, in pre-
vious work, simulation is calibrated with ground truth collected
under a certain ECM. These calibrated models do not necessarily
reflect the energy implications under other ECMs. An energy model
that is robust to the changes resulting from a building operated
under different ECMs could provide credibility to compare the
potential energy savings obtained from different ECMs and could
help researchers/practitioners to choose the relatively optimal
ones for implementation. Therefore, the second objective of this
study is to improve the robustness of energy simulation.
Specifically, in this study, the ground truth energy data for calibrat-
ing the energy model are mixed from two controls (two different
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ECMs) and the hypothesis that the model would have consistent
performance for either of the ECM is tested.

Since an energy simulation model typically has large amounts
of input parameters that cannot be all determined by available evi-
dence, and may result in deviations and confusions for determining
values, a classification schema is created and all of the input
parameters are classified into hierarchical categories for calibra-
tion. First the input parameters are classified into two categories:
observable parameters and non-observable parameters (Fig. 1).
Observable parameters are the parameters, such as window sizes
and equipment multipliers, whose values could be determined
directly using available evidence, such as evidence gathered
through archived documents or on-site visits. Non-observable
parameters, such as material conductivity and fan efficiency,
cannot be determined by the available evidence. They are analyzed
by sensitivity analysis, based on which the influential ones are
differentiated and further categorized as estimable parameters
and adjustable parameters. Estimable parameters are the non-
observable parameters that are deterministic in nature (e.g., door
open/close status) but whose values are difficult to collect due to
lack of feasible data collection approaches or privacy concerns,
for example, occupancy schedules. In this study, it is assumed that
estimable parameters could be indirectly inferred or calculated
using observable parameters by learning the relationships between
estimable parameters and observable parameters. Adjustable
parameters, such as light radiant fraction, are parameters that
are stochastic in nature. The values of these parameters are varied
in their respective domains and cannot be measured exactly.
Input Parameters

Observable Parameters Non-Observable Parameters

Influential Parameters Non-Influential Paramters

Estimable Parameters Adjustable Parameters

Significant Parameters Insignificant Parameters

Fig. 1. Classification schema of input parameters.
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Further, adjustable parameters are divided into significant adjus-
table parameters and insignificant adjustable parameters based
on their statistical significance. It is assumed that the significant
adjustable parameters are mainly responsible for the discrepancy
between the simulated and measured energy performances. Their
values should be carefully determined for multi-level simulation
calibration. The multi-level calibration is defined as a calibration
that minimizes discrepancies at different levels of simulation
(e.g., building level, ECM level, and zone level). It is important to
note that this classification only defines the characteristics and
functions of each category for input parameters since building
energy model calibration is a unique process. The specific members
vary case by case.

Our framework is built on the following tasks: gathering data,
constructing the model, simulating the model, analyzing and mini-
mizing discrepancies between the simulated and measured energy
performances. The framework has five consecutive steps (Fig. 2):
(1) initial energy modeling using available evidence; (2) sensitivity
analysis, which ranks and compares the influences of non-observ-
able parameters on the energy simulation outputs at multiple
levels; (3) parameter estimation to determine the values of estim-
able parameters, such as occupancy schedule, and to finalize base
modeling; (4) discrepancy analysis, which assists to understand
the sources of discrepancies between the simulated and measured
energy performances; and (5) discrepancy minimization, the last
step, aims to reduce discrepancies at multiple levels simultane-
ously by determining the parameter values that cannot be
obtained through evidence or estimation. The proposed calibration
methodology uses evidence to build the energy model and imple-
ments statistical learning to reduce the simulation discrepancy.
Our detailed methodology is described step-by-step in the follow-
ing subsections.
3.1. Initial energy modeling

The goal of this first step is to provide a basic description for
building geometry, construction elements and mechanical sys-
tems, using evidence-based data. The initial representation of the
energy model is created through iterative model evolution, where
each input is updated based on a source of evidence. Since there
may be various available sources for determining parameter val-
ues, the hierarchy structure described in the literature [31,36,44]
alysis
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is used to rank evidence sources. The source with higher priority is
considered more reliable than the lower one (Fig. 3). In general, the
first step is to evaluate the as-built and design documents, includ-
ing architectural plans, electric lighting systems (e.g., lamps and
ballasts), HVAC designs (e.g., zoning and connections), schedules
(e.g., designed occupant schedules and light schedules), inven-
tories (e.g., appliances and equipment), and HVAC specifications
(e.g., fan nominal power). This step integrates both as-built data
and as-designed assumptions. The second step is to visit site, sur-
vey and interview the technicians, engineers and building facility
management personnel, and study the operation and maintenance
(O&M) manuals, as well as conduct some continuous measure-
ments, such as lighting level if possible (depending on specific
building situations and available methods). In this step, the data
collected from the first step is re-examined to check whether there
is an update to be made or there is any change since the building
was built. The last step is using default settings based on similar
types of buildings in simulation programs and using the codes
and standards when needed. Although research has demonstrated
that the data from ASHRAE standards and manufacturer hand-
books are not reliable due to the substantial variability in buildings
and building systems, values must be set for all input parameters
to maintain model integrity. Here, modeling steps do not necessar-
ily follow the hierarchy direction (Fig. 3). Since the available evi-
dence for different buildings may have different levels of details
and accuracies, typically the initial modeling can be described as
an ad-hoc procedure, requiring numerous iterations of input
updates. It is difficult to determine a specific evidence source for
a specific parameter, however basically the initial modeling accu-
racy increases if more high-level evidence is used for determining
the values of input parameters.

In general, lack of necessary evidence for determining the input
parameters is common in building energy simulation and that is
one of the motivations for this study. The evidence should be used
if possible. For those parameters that cannot be determined
directly by evidence, in our calibration framework, values are first
assigned as default values or autosized by the simulation program,
while the influential ones are classified into two categories of
estimable parameters and adjustable parameters for further analy-
sis. Once the new values are calculated, we use them to update the
temporary values set in the initial modeling.

3.2. Sensitivity analysis for parameters

The initial model is then used as a basis for the sensitivity
analysis. Usually, there are several hundred non-observable
parameters whose exact values are unknown and it is usually
As-Built Documents

Design Documents

Continuous Measurement
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O&M Manuals

Default Settings for 
Similar Type of Buildings
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Continuous Measurement

Survey and Interview

O&M Manuals
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Design Documents

Default Settings for 
Similar Type of Buildings

Codes and Standards

High

Low

Step1

Step2

Step3

(a) Sequence (b) Hierarchy

Fig. 3. Hierarchy and sequence for observable parameter determination.
infeasible to run millions of simulations to determine the values
of all of them with an equal priority. Therefore, the number of
non-observable parameters to be studied should be reduced.
Given the fact that the influences of certain input parameters on
energy simulation results are more significant than the others;
these inputs should be prioritized for model calibration. In our cali-
bration framework, sensitivity analysis is used as a screening
method to rank non-observable parameters based on how the
simulated energy performance would change in response to the
changes made to each non-observable parameter. In order to
achieve accurate energy simulation results at multiple levels, a
sensitivity analysis is conducted for n times to account for n levels
of energy consumption.

There is no established rule or procedure for sensitivity analysis,
as each method has its own pros and cons [45]. We use Morris
method in our framework to identify the influential parameters,
as it has been proven to be a valid method for screening building
energy simulation parameters [46]. Morris method makes no
assumptions about the relationships (e.g., linearity and correlation)
between parameters and model outputs [47]. It could process large
numbers of parameters equally by a relatively limited number of
simulation runs. This process is efficient and accurate as it does
not require a predefined probability density function for each
parameter [47], given the fact that assigning estimated probability
density functions for hundreds of non-observable parameters is
time-consuming and error-prone. Although Morris method cannot
provide exact uncertainty that each parameter causes, it is suffi-
cient for ranking the influences and selecting parameters for fur-
ther adjustment. In addition, different parameter types (e.g.,
discrete, continuous or multi-dimensional) could be considered
equally. Morris sensitivity analysis is based on the factorial sam-
pling technique, in which the influential input parameters are
identified through a series of simulation runs by changing one
parameter at a time, and then comparing the corresponding simu-
lated energy performances. A number of individual one-factor-at-
a-time samples of input parameters are randomly generated
within their ranges as an input vector for simulations. In our
framework, we use larger ranges to be conservative, because the
proper range of a parameter is determined by analysts’ knowledge
and experience, and if the range is larger, the probability that the
actual value within the range is high. Sensitivity of each parameter
is expressed by a value called ‘‘elementary effect’’ [47], which is
defined as the measure of parameter influence, showing the
change in the simulation output as a result of a change in this
parameter, while all other parameters are kept constant. As the
value of each parameter is varied within its range, the mean value
of the effect m is then compared to the standard deviation Sd to
provide a normalized criterion for ranking influential parameters.
Parameters with higher absolute mean-standard deviation ratio
are more influential. The boundary between influential parameters
and non-influential parameters should be determined case by case
based on different goals, computational requirements and result
distributions. Based on the demonstration by previous research
[46], if the parameters are above the threshold set by the lines
m ¼ �2Sd=

ffiffiffi
r
p

(r is the number of independent samples for each
parameter), they are considered to have non-linear or joint effects.
When the sensitivity analysis is completed, the influential parame-
ters are explored in the next steps while the non-influential
parameters are assigned with default values or autosized by the
simulation program.
3.3. Parameter estimation

Parameter estimation is conducted for the influential non-
observable parameters that are deterministic in nature, however
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are difficult to be collected due to lack of feasible data collection
approaches. These parameters could be building use related (e.g.,
occupancy, lighting, and appliance) or system operations related
(e.g., HVAC thermostat schedules). Prior research has demon-
strated that occupancy is one of the important factors for the dis-
crepancies between the simulated and measured energy
performances [8], as the main end-users of energy such as HVAC
systems, lighting and appliances are associated with occupancy
[48,49]. Traditionally, the use of day-typing (typical days to
characterize a period of time) and zone-typing (typical space to
represent a building) were adopted. Currently observations, sur-
veys, short-term measurements or real-time end use monitoring
methods are used to collect data instead. However, these methods
are not practical due to the intrusion they cause to buildings and
their occupants, and they do not satisfy the requirements for
detailed building energy simulation because of the lack of preci-
sion and consistency and verification in auditing.

In this paper, the tested hypothesis is that some of the estim-
able parameters could be indirectly inferred or calculated from
the observable parameters. This step is specific for each case, how-
ever the underlying assumption remains the same: the parameters
to be estimated either have regular influences on certain observ-
able parameters or their values repetitively occur with variations.
Therefore, the relationships between estimable parameters and
observable parameters could be established through statistical
learning. Once completed, measurements of observable parame-
ters (depending on the sophistication of building management sys-
tems and types of onsite metering systems) are learned as
parameter values for estimable parameters. If there are common
parameters shared by different levels, they are assigned with the
same values. Although varies case by case, the parameter estima-
tion step is a mining process to find the patterns of unknown
parameters related to building use and system operations using
known parameters. In order to test the hypothesis that a consistent
simulation performance can be achieved when the model is cali-
brated using ground truth energy data from mixed ECMs but it is
simulated for an individual ECM, the ECM-related parameters
should be controlled instead of being estimated.
3.4. Simulation discrepancy analysis

Since the influential parameters are the main sources of the dis-
crepancies, and the estimable parameters could be indirectly esti-
mated using evidence related data, which are deterministic and
based on the facts, it is assumed in this paper that some of the
adjustable parameters are responsible for the majority of the dis-
crepancies between the simulated and measured energy perfor-
mances. Therefore, we propose to explore the structural patterns
of the discrepancies and screen out insignificant parameters.
Several methods could be developed to analyze the patterns, how-
ever as a beginning, the linear relationship is explored to model the
contribution of each adjustable parameter to the discrepancies
using a regression fitting. All adjustable parameters are varied
within their ranges and the nominal values are their default values
that could be found in simulation programs. A probability density
function (e.g., triangular, Gaussian, or uniform) of each continuous
parameter, such as wind speed, is used to select the values based
on its probability distribution, while discrete parameters such as
iteration number are characterized by minimum, maximum and
default values. If analysts cannot determine the ranges, or when
there are time constraints, preferred ranges of parameters, pro-
vided by the simulation programs, could be used instead.
Otherwise, analysts could narrow down or specify the range of
each input parameter. Each parameter is normalized by
x� ¼ x�xmin

xmax�xmin
ðx�max � x�minÞ þ x�min for comparison.
Random sampling is used to select samples to form independent
variables, and multiple simulation runs are then completed to gen-
erate the output vector. The discrepancies between the simulated
and measured energy performances, calculated by dividing the dif-
ference between the simulated results and the actual measure-
ments by the actual measurements, are used as dependent
variables. The values of remaining parameters (after parameter
estimation is completed) are considered as independent variables.
The number of simulation runs is usually based on experience or
trial; however in our framework, the actual number of simulation
runs depends on when the regression model converges.
Specifically, multi-regression is used to establish the linear model,
the outputs (discrepancies) of which are the sums of combinations
of parameter values, while the weights are assigned to each parame-
ter before adding them together. The regression line is denoted by
yleveln ¼ aþ b1x1 þ b2x2 þ b3x3 þ . . .þ bkxk þ e, where a is the inter-
cept, e is the random disturbance and bi is the coefficient of the ith
parameter, indicating its contribution to the determination of the
dependent variable. If some of the parameters are proven to be
interrelated as a result of the sensitivity analysis, the linear model
is modified into a non-linear one. For example, if parameter
x1; x2; x3 are all above the m ¼ � 2Sdffiffi

r
p lines (for each parameter, m

is the mean of its elementary effects, Sd is the standard deviation
of its elementary effects, and r is the number of samples
selected), the new multi-regression model would be yleveln ¼
a þ b1x1 þ b2x2 þ b3x3 þ b01x1x2 þ þb02x2x3 þ b03x1x3 þ b04x1x2x3 þ
b4x4 . . .þ bkxk þ e to take their interactions into consideration. In
order to calibrate the energy model at multiple levels, n (n equals
to the number of levels) multiple-regression models are created
simultaneously, in which some of the parameters might be shared.
The same parameters could have different weights or even reverse
contributions (overestimate or underestimate) to different levels
of simulations. The intercepts and coefficients of variables are esti-
mated with the least square method, and coefficients of determina-
tion (R2) are calculated to interpret the proportions of discrepancies
that can be explained by the regression models. F-statistics is used
to test the significance of the regression models and to analyze
whether the discrepancies are significantly influenced by the adjus-
table parameters. Then T-statistics is used to differentiate insignifi-
cant parameters from significant parameters, which account for the
discrepancies.
3.5. Simulation discrepancy minimization

After identifying the contributions of parameters to the sim-
ulation discrepancies at different levels, the most important step
is to determine the values of these parameters for minimizing
the discrepancies at multiple levels simultaneously. In current
practice, the values of the significant adjustable parameters are
usually determined as best-guesses of experts or adjusted blindly.
In order to make this step more efficient and repeatable, multi-ob-
jective programming, commonly used in optimizing energy effi-
cient designs [50], is used for updating the values of adjustable
parameters and minimizing the simulation discrepancies at multi-
ple levels simultaneously. In our framework, the multi-objective is
denoted by min ¼ fy0Level1; y

0
Level2; y

0
Level3; . . . ; y0Levelng, subject to the

constraints, such as bound limits and integrality requirements.
Since the values of all parameters should be selected from their
parameter ranges and are recommended not to be far from
the default values set by the program, the objective functions
are expressed as y0leveln ¼ aþ b1x1 þ b2x2 þ b3x3 þ . . .þ bkxk þ eþPk

1ðxk � xk defaultÞ2 (both xk and xk default are normalized by
x�k or k default ¼

xk or k default�xmin
xmax�xmin

ðx�max � x�minÞ þ x�min where a penalty is

introduced. At first, each single objective function is solved
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independently. Pareto optimal solution sets A⁄ (for minimizing dis-
crepancies at the level 1), A⁄⁄ (for minimizing discrepancies at the
level 2), and so forth, are generated separately for multiple objec-
tives. The union of A⁄, A⁄⁄ and so forth, is the solution set for the
multi-objective programming. The relative importance of the n
objectives should be carefully selected based on the purpose of
simulation, as the selected weights have significant influences on
the final solution [51]. If the weights are arbitrarily assigned, the
programming may converge on the locally optimal solution.
Therefore, in this paper the weight computation process is
transformed to a synthetical fitness optimization problem with
preference being considered as a constrain condition. Analysts
should determine the relative importance of w0

1 (for level 1
accuracy) and w0

2 (for level 2 accuracy), and so forth. (e.g.
w0

1 > w0
2 > w0

3 > w0
4 . . . > w0

n). Gradient projection method [52] is
then used to search the optimal weights that could maximize
weighted variance and differentiate each solution from
others. Once the weights are decided, they are assigned to all
objectives, and the multi-objective is converted into a single
weighted objective function as min f ¼ fw0

1yLevel1 þ w0
2yLevel2þ

w0
2yLevel3 þ . . .þw0

2yLevelng, where w0
1 þw0

2 þw0
3 þ . . .þw0

n ¼ 1.
Linear programming is then used to synergize the weights of
parameters at each level determined by regression analysis and
find the initial solutions (seed vertex). An effective vertex near
the seed vertex is also searched. As long as the actual disaggregated
energy performance for detailed end uses, such as lighting,
equipment, and HVAC, could be metered, the multi-objective
discrepancy minimization method could be applied to any multi-
ple-level calibration.

4. Framework evaluation

While Section 3 provides a step-by-step description of the pro-
posed calibration methodology, Section 4 evaluates its validity by
using a case study, as explained below. However, it is important
to note that the contribution is the calibration framework, intro-
duced in this paper, rather than the case study results, which are
used to evaluate and validate the framework.

4.1. Case study description

A typical educational office building, located on the University
of Southern California campus, was chosen to implement the pro-
posed calibration framework. The case study building (Fig. 4) is a
three-story office building with a gross area of 3735 m2, and con-
tains 89 mechanically ventilated rooms that have spaces of varying
sizes and functions. Most of the rooms in the building are enclosed
single occupancy offices; other rooms are classrooms, conference
Fig. 4. Case study building.
rooms, and auditoriums. The building hosts approximately 50 per-
manent occupants (i.e., staff, faculty, graduate students). The build-
ing is equipped with a state-of-the-art Building Management
System (BMS) and central HVAC system with air handling units
(AHU). A zone in this paper is defined as the mechanical zones
for the HVAC system. The 89 rooms are divided into 67 mechanical
zones, including 64 VAV controlled zones and 3 Fan-Coil controlled
zones. The heat flow and ventilation of each zone can be individu-
ally controlled and adjusted. There are two AHUs in the building,
each servicing one side of the building with similar sizes of service
areas.

The HVAC energy consumption in the building can be decom-
posed to primary HVAC systems, such as used by chillers and boil-
ers to generate chilled and hot water, secondary HVAC systems,
such as used by AHUs and their embedded fans to distribute con-
ditioned air in the building, and HVAC terminals, such as VAVs and
FCUs. The ground truth energy data used for calibration was
obtained or calculated from the information recorded by a
Honeywell Building Management System (BMS), which provides
central control over the chiller, boiler, AHUs and VAVs. This infor-
mation typically includes AHU damper position, fan flow rate, out-
side temperature, VAV damper position, supply air temperature,
return air temperature, and so on. OpenStudio and EnergyPlus pro-
grams were used for energy simulation. OpenStudio accounts for
geometrical modeling and acts as a middleware to connect with
EnergyPlus [53]. Detailed energy modeling and calibration are
done in EnergyPlus as it could provide strict heat balance and a
simultaneous solution for LSPE (load, system, plant, economic).

ECM, which stands for energy conservation measure, refers to a
specific HVAC control strategy in this paper. Two different ECMs
were implemented in the test bed building, in order to explore
our second objective and test our hypothesis, which is an energy
model calibrated using ground truth energy data from mixed
ECMs could consistently simulate energy performance for either
ECM. The first ECM (baseline HVAC control strategy, short as
‘‘baseline ECM’’) ran at an on-hour mode during the daytime
(6:30–21:30 on workdays, and 7:00–21:30 on weekends), all
mechanical zones in the building were assumed to be always occu-
pied, and a constant temperature setpoint (22.8 �C) was main-
tained by a Proportional Integral Derivative (PID) controller,
which dynamically adjusted the airflow damper and reheating
valve of each zone. The second ECM (bimodal HVAC control strat-
egy, short as ‘‘bimodal ECM’’) was demand responsive and based
on real-time occupancy. During the daytime, an occupied mode
was enforced for occupied zones, where a constant temperature
setpoint (22.8 �C) was maintained by the PID controller. If a zone
was vacant for a minimum of 15 min, a vacant mode was enforced,
where the temperature setpoint was set back to 25.5 �C until the
zone was occupied again. The bimodal ECM was implemented on
the east side of the second and third floors covering 37 rooms
(14 zones of which were metered by the BMS). The rest of the
building was operated using the baseline ECM. Both ECMs had
off-hour modes, where the HVAC system was shut off during night-
time, and no cooling, heating or ventilation services were provided.
Only minimum airflow was maintained to meet the ASHRAE com-
pliance. Four months of energy consumption data were collected
during these two periods. The first period spanned for 82 days from
Jan 1st to Feb 21st 2013 and from Apr 1st to Apr 30th 2013, and the
HVAC system during this period was operated under baseline ECM.
The second period spanned for 38 days from Feb 22nd to Mar 31st
2013, when the bimodal ECM was adopted for the 14 zones.

4.2. Evaluation matrices

HVAC related energy consumption was simulated to validate
the proposed calibration framework at multiple levels as explained



Table 1
Acceptable tolerances for hourly building energy simulation.

Metric IPMVP (%) FEMP (%) ASHRAE (%)

MBE ±5 ±10 ±10
CV (RMSE) ±20 ±30 ±30
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below. It is important to note that even though the framework is
evaluated at three different levels (i.e., building level, ECM level
and zone level energy simulation calibration), the discrepancy
minimization could be applied to any multiple levels of calibra-
tions, such as floor level. A total of 22 zones and HVAC chiller, boi-
ler and AHUs were taken into account for validation. Metrics were
defined to explore the discrepancies between the simulated and
measured HVAC energy consumptions at three different levels.
For the building level calibration, the sum of electricity and gas
consumed by the entire HVAC system, including the air loops
and plant loops, was compared with the measured consumption
to indicate the percentage of building level discrepancy. Energy
consumption of each zone for each day, including heating and cool-
ing provided by the terminals for actual conditioning demands,
was calculated by a heat formula (Eq. (1))

Q i ¼
Z q

_VCpijTsi � Trij ð1Þ

where Tsi and Tri are supply air temperature and return air tempera-
ture for zone i, and _V is the air volume flow rate (m2/s). Their actual
values are metered and recorded by BMS. Cpi is a constant value of
specific heat capacitance for zone air as 1000 J/(kg �C) and q is the
zone air mass density with the value of 1.29 kg/m3. Zone level ven-
tilation was not considered in this paper due to the lack of metered
data.

The ECM level energy consumption was calculated by adding the
energy consumptions of the zones served by one AHU (Eq. (2)). The
AHU takes in outside air, mixes it with returned air from the build-
ing, and cools down the mixed air to 12.8 �C with chilled water sup-
plied by the chillers. There are 14 zones on the east side of the second
and third floors, where both the baseline ECM and bimodal ECM
were implemented.

Q ¼
X14

i

Q i ð2Þ

The zone level energy consumption was calculated by averaging
the energy consumptions of 8 zones on the west side of the third
floor where only baseline ECM was implemented (Eq. (3)).

Q ¼ 1
8

X8

i

Q i ð3Þ

The MBE (mean bias error) and CV (RMSE) widely used in previous
research [8,36,37] were chosen as two criteria to evaluate the cali-
brated energy model by checking whether there is acceptable
agreement between the simulated and measured energy consump-
tion. Hourly calibration was conducted. N stands for the number of
Fig. 5. Building geometry (back side), one typi
hours within a period. Eactual is the actual energy consumption
metered by the BAS while Esimulated is the simulated energy con-
sumption by the building energy model (Eqs. (4) and (5)).

MBE ¼
PN

j¼1ðEactualðjÞ � ESimulatedðjÞÞ
N

ð4Þ

CVðRMSEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1ðEactualðjÞ � ESimulatedðjÞÞ2

q
E

ð5Þ

MBE is a non-dimensional bias measure for overall deviation (Eq.
(4)). A negative MBE value means the simulation model under-
estimates the energy consumption, while a positive MBE value
represents an overestimation. It could measure long-term model
performance through analyzing the error between the simulated
and measured energy consumptions; however the underestimation
and overestimation might compensate each other. The averaged
sum of squares errors is called the mean squared error (MSE).
Coefficient of variation of RMSE (CVRMSE) is determined by divid-
ing the RMSE by the mean measured energy consumption (Eq.
(5)). It is not influenced by the compensation effect and could evalu-
ate the variability of agreement between the simulated results and
measured values over a period of time. In general, an energy sim-
ulation model is considered as calibrated if the two criteria are
satisfied at all the three levels according to the acceptable toler-
ances set by ASHRAE Guideline 14, IPMVP or FEMP [54–56]. As
there is no regulated daily tolerance in literature, in this case study,
hourly tolerances (Table 1) were used for evaluating daily MSE and
CV (RMSE).

4.3. Initial energy modeling

The initial energy model, for the case study, incorporated infor-
mation collected from archived documentations, such as as-built
drawings, specifications, renovation logs, operating records, and
information gathered from on-site visits, where building’s geomet-
ric characteristics, construction elements, associated mechanical
systems, appliance specifications, were collected (Fig. 5). For the
rest of the input parameters that did not have available evidence,
default settings were used or their values were temporarily
assigned according to standards and codes. Weather was modeled
using TMY (Typical Meteorological Year) data downloaded from
the DOE website (Energy Efficiency and Renewable Energy) specific
for the building site [57]. The data were collected from the station
close to Los Angeles International Airport that is about 10 miles
away from the test bed building. The TMY are data sets of hourly
values of meteorological elements and solar radiation for one year.
The simulation period spanned from January 1st to April 30th,
2013, and from March 15th to November 15th, 2014.

4.4. Sensitivity analysis for parameters

In total, there were 227 parameters whose values could not be
determined (non-observable parameters) during the initial energy
cal zone (three offices) and HVAC system.



Fig. 6. Mean and standard deviation of the elementary effects on the energy simulation for the influential parameters at the building level, ECM level and zone level.

Table 2a
Influential parameters and their parameter ranges and default values for the building level energy simulation
(blue-shaded parameters are for controlling the HVAC system under different ECMs, brown-shaded
parameters are estimated based on observable evidence, red shaded parameters are found to be statistically
insignificant in discrepancy analysis – explained in Section 4.6).

IDs 
Influential
Parameters

Parameter
Ranges 

Default
Value

IDs
Influential
Parameters

Parameter 
Ranges 

Default
Value

1 Chiller COP 0<X<10 5.9 18
Equipment/Applianc

e Schedule
Estimable TBD

2 Wind Speed 0<=X<40 15 19
Average Ventilation 

Rate Range
1<=X<=6 4 

3
Occupant
Activity

100<=X<=1
50 

115 20
Chiller Part Load 

Ratio 
0.3<=X<=0.9 0.7

4
Heating/Cooling 

Schedule
ECM

Control
TBD 21 Boiler Efficiency 0<=X<=1 0.8

5
Chilled Water

Delta T 
-

50<=X<=50
14 22

Heating/Cooling 
Time Interval 

0<=X<=60 10

6
Solar

Absorptance
0<=X<=1 0.7 23 Occupant Heat Load Estimable TBD

7
Material

Conductivity
0<X<30 17 24

AHU Minimum
Airflow Rate

0<X<25000 15000

8
Occupancy
Schedule

Estimable TBD 25
Heat Recovery

Efficiency
0<=X<=1 0.8

9
Lighting 

Fraction Radiant 
0<=X<=1 0.72 26

Fresh Air 
Introduction Rate

20<=X<=50 35

10 Surface Albedo 0<=X<=1 0.3 27
Maximum Zone 

Wind Speed 
0<=X<40 20

11 
Fan Total
Efficiency

0<=X<=1 0.7 28
Minimum Outside

Air Fraction
0<=X<=1 0.3

12 Light Schedule Estimable TBD 29
Airflow

Convergence 
Tolerance

0<X<1 0.0004 

13 
Temperature 

Sensor Height
0<=X<=3 1.6 30

Lighting Time 
Interval 

0<=X<=60 10

14 
Occupancy

Time Interval
0<=X<=60 10 31 Ground Temperature 66<=X<=72 68

15 
Solar Heat Gain

Coefficient
0.25<=X<=

0.8 
0.5 32

Minimum Surface
Convection Heat 

Transfer Coefficient
0<=X<=5 3 

16 
Hot Water

Sizing Factor
0<X<5 1 33 Ground Reflectance 0<=X<=1 0.2

17 Wall U-Factor
0.2<=X<=1.

2
0.8 34

Reference 
Barometric Pressure 

X>0 1*105
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modeling due to the lack of available evidence, such as surface
albedo, fan total efficiency and air flow fraction. Morris method
was implemented three times for the building level, ECM level
and zone level sensitivity analysis. The elementary effect was
expressed as a percentage of simulation variation in response to
the change resulting from the variation of the input parameter.
For each parameter, five independent samples (r = 5) were ran-
domly selected and the elementary effects were simulated by
EnergyPlus with 1362 simulation runs (the number of
runs = (r + 1)⁄ the number of parameters) in total for each level.
The r is usually chosen between 5 and 15. Five samples were chosen
for each parameter as the exact rank of parameter sensitivity does
not affect the discrepancy analysis and minimization process, thus
the minimum number was selected to make the sensitivity analysis
efficient. The sensitivity analysis has been implemented using
Matlab. The 1362 idf files were generated for simulation runs and
the simulation results (from Energyplus) were collected to calculate
the elementary effect for each parameter. The parameters were



Table 2b
Influential parameters and their parameter ranges and default values for the ECM level energy simulation
(blue-shaded parameters are for controlling the HVAC system under different ECMs, brown-shaded
parameters are estimated based on observable evidence, red shaded parameters are found to be statistically
insignificant in discrepancy analysis – explained in Section 4.6).

IDs 
Influential
Parameters

Parameter
Ranges 

Default
Value

IDs
Influential
Parameters

Parameter 
Ranges 

Default
Value

1
Zone Cooling 
Sizing Factor

0<=X<=5 1.1 17
Window Shading 

Coefficient 
0.2<X<1.0 0.8

2
Thermostat

Setpoint 
ECM Control TBD 18

Fraction of 
Convective

Internal Loads
0<=X<=1 0.7

3
Minimum

Airflow Fraction
0<=X<=1 0.2 19

Occupant Heat 
Load

Estimable TBD

4
Heating/Cooling 

Schedule
ECM Control TBD 20

Airflow
Convergence 

Tolerance
0<X<1 0.0004 

5
Temperature 

Sensor Height
0<=X<=3 1.6 21 Lighting Load Estimable TBD

6
Occupancy
Schedule

Estimable TBD 22
Zone Flow
Coefficient 

0<=X<=1 0.8

7
Heating Coil
Efficiency

0<=X<=1 0.8 23
Thermal

Absorptance
0<X<0.999 0.9

8
Zone Supply Air 

Temperature
10<=X<=32 20 24 Infiltration Rate 0.1<X<=5 1.8

9
Solar Heat Gain

Coefficient
0.25<=X<=0.

8
0.5 25

Gross Rated 
Cooling Coil COP 

0<X<5 3 

10 Wall U-Factor 0.2<=X<=1.2 0.8 26
Equipment/
Appliance
Schedule

Estimable TBD

11 
Delta Adjacent 

Zone Temp
-20<=X<=20 10 27

Effective Air
Leakage Area

0<X<50 20

12 
Occupant
Number

Estimable TBD 28
Light Fraction 

Radiant 
0<=X<=1 0.72

13 
Heating/Cooling 

Time Interval
0<=X<=60 10 29

Maximum Zone 
Wind Speed 

0<=X<=40 20

14 
Supply/Zone Air 

Temperature 
Delta

-20<=X<=20 6 30
Internal Loads

Density
1.5<=X<=3 1.8

15 
Daily

Temperature 
Range 

-20<=X<=20 10 31
Window Solar 
Transmittance

0<=X<1 0.7

16 
Lighting 
Schedule

Estimable TBD 32
Visible 

Absorptance
0<=X<=1 0.7
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then ranked by their absolute mean-standard deviation ratios and
the ones with higher ratios were considered as more influential
for the energy simulation.

Conservative boundary was set, by which the parameters with
absolute mean-standard deviation ratio greater than 0.1 were influ-
ential (the boundary could also be determined by experience or
using visual plot). Fig. 6 shows the mean and standard deviation
of the elementary effects for each parameter. 34 parameters for
building level simulation, 32 parameters for ECM level simulation
and 33 parameters for zone level simulation were presented in a
decreasing order of influence shown in Tables 2a–2c, respectively.
The influential parameters for the three levels of energy simulation
were not exactly the same; even the common parameters had dif-
ferent orders of influence. As expected, building level influential
parameters had global influence on the building energy consump-
tion, basically related to running controls and loads for HVAC sys-
tems, conditions and performance for HVAC plants, and envelope
thermal characteristics; ECM level influential parameters had influ-
ences on local thermal states, loads, control settings and conditions
for HVAC terminals; zone level influential parameters were mainly
associated with end use demands, material properties, space heat
transfer and balance. The three lists of parameters should be given
primary focus by changing the values of the influential parameters
within their plausible parameter ranges in the next steps. The non-
influential parameters were left with their default values or auto-
sized by EnergyPlus.
4.5. Parameter estimation

For the case study, the tested hypothesis was ‘the parameters
related to building use or system operations are associated with
occupancy. The heating/cooling schedule, lighting schedule, equip-
ment schedule, occupant number, lighting load and occupant heat
load could be related to occupancy schedule. First, two on-site vis-
its were performed to collect the information about the occupancy
capacity of each zone and the specifications and number of com-
puters and appliances in each zone. It has been demonstrated by
the authors’ previous research that occupancy schedules could be
estimated by a real-time non-intrusive occupancy detection model
using the observable ambient related parameters, such as CO2 con-
centration, temperature and light level [58–60]. The underlying
assumption is that occupancy status regularly influences the ambi-
ent environment. Thus, there exists a relationship between pres-
ence of an occupant and changes in the ambient factors, where
an occupant is present. By mathematically or statistically modeling
this relationship through supervised learning, future ambient data
could be analyzed to output corresponding occupancy status. The
sampling rate for the occupancy detection model was 3 min.
Schedules for rooms without ambient sensors were determined
according to the ANSI/ASHRAE/IES Standard 90.1-2013 [61].

Equipment/appliances were assumed to be only used when a
space was occupied thus their schedules followed occupants’
schedules. Lighting levels were sensed by light sensors in each



Table 2c
Influential parameters and their parameter ranges and default values for the zone level energy simulation
(blue-shaded parameters are for controlling the HVAC system under different ECMs, brown-shaded
parameters are estimated based on observable evidence, red shaded parameters are found to be statistically
insignificant in discrepancy analysis – explained in Section 4.6).

IDs
Influential
Parameters

Parameter 
Ranges

Default
Value

IDs
Influential 
Parameters 

Parameter 
Ranges 

Default
Value 

1 
Solar Heat Gain

Coefficient 
0.25<=X<=0.8 0.5 18 

Heating/Cooling
Time Interval

0<=X<=60 10 

2 
Sensible Heat

Ratio
0.5<=X<=1 0.8 19 

Equipment/ 
Appliance 
Schedule

Estimable TBD

3 Wall U-Factor 0.2<=X<=1.2 0.8 20 
Minimum Air
FlowAirflow

Fraction 
0<=X<=1 0.2

4 

Supply-Air-to-
Zone-Air

Temperature
Difference 

-20<=X<=20 6 21 
Occupant Heat

Load 
Estimable TBD

5 
Zone Flow
Coefficient 

0<=X<=1 0.8 22
Zone Supply Air 

Temperature
50<=X<=90 68 

6 
Heating/Cooling 

Schedule
ECM control TBD 23 

Occupant 
Activity

100<=X<=150 115 

7 
Fresh Air 

Introduction Rate
20<=X<=50 35 24 

Delta Adjacent
Zone Air

Temperature
-20<=X<=20 10 

8 
Thermostat

Setpoint 
ECM Control TBD 25 

Daily
Temperature 

Range 
-20<=X<=20 10

9 
Zone Cooling 
Sizing Factor

0<=X<=5 1.1 26 
Solar 

Transmittance 
0<X<1 0.7

10 
Temperature

Sensor Height
Above Ground 

0<=X<=3 1.6 27 
Airflow

Convergence 
Tolerance 

0<X<1 0.0004 

11 
Occupancy
Schedule

Estimable TBD 28 
Visible

Reflectance
0<=X<=1 0.08

12 Occupant Number Estimable TBD 29 Infiltration Rate 0.1<X<=5 1.8

13 
Delta Adjacent

Zone Temp
-20<=X<=20 10 30 

Light Fraction 
Radiant

0<=X<=1 0.72

14 Lighting Schedule Estimable TBD 31 Surface Albedo 0<=X<=1 0.3

15 
Minimum Surface 
Convection Heat

0<=X<=5 3 32 
Internal loads

density
1.5<=X<=3 1.8

16 
Airgap Thermal

Resistance
X>0 0.2 33

Lighting Time
Interval

0<=X<=60 10 

17 
Glazing 

Conductivity
X>0 0.9

2 For interpretation of color in Figs. 7–9 and Tables 2a–2c, the reader is referred to
the web version of this article.
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room. Light fixtures were assumed to be used if a space was occu-
pied and when artificial lighting was needed during 6:30–10:00
and 15:30–18:00 (after 18:00 lighting schedules were the same
as the occupancy schedules). The parameter for occupant heat load
was calculated based on the occupant number at each time point
and based on the standards specified by the ASHRAE 2009 [62].
The exceptional parameters controlled in this paper were for the
two ECMs of HVAC setpoint controls and are presented in Tables
2a–2c. The two parameters of HVAC Setpoints and Heating/
Cooling Schedules for the 14 zones during the bimodal ECM imple-
mentation period were programmed and driven by actual occu-
pancy; otherwise they followed the baseline ECM. Occupancy of
a particular zone was determined by aggregating the occupancy
of associated rooms. A zone was considered vacant only if all
rooms within the zone were vacant.

4.6. Simulation discrepancy analysis

Matlab was used in this study to implement the discrepancy
analysis and discrepancy minimization for calculating the values
of adjustable parameters. In this case study, there were 29 adjustable
parameters for the building level simulation, 24 adjustable parame-
ters for ECM level simulation, and 26 adjustable parameters for zone
level simulation (see unshaded and red-shaded parameters in Tables
2a–2c), which were assumed to be responsible for the majority of the
discrepancy between the simulated and measured energy
consumption. This step analyzed where the major errors lied based

on a regression fitting by weighing the relations bY building level ¼
a0 þ a1X1 þ a2X2 þ . . . þ a29X29 þ ebuilding level,bY ECM level ¼ b0 þ b1Z1þ
b2Z2þ . . .þb24Z24þeECM level and bY zone level ¼ c0 þ c1Z1 þ c2Z2 þ . . .þ
c26Z26 þ ezone level) and testing the statistical significance.

Specifically, bY level i is the simulation discrepancy at the i level,
a0; b0; c0 are the constant, an; bn; cn are the coefficients for regres-
sion respectively, and ei is the residual of the regression function
for level i simulation. Actual energy consumption data, collected
from January 1st to March 10th, were used for the multi-regression
analysis, and the results were presented in Figs. 7–9.2 Each adjustable
parameter was normalized within [0,1]. Random sampling was used
to select the samples within the predefined parameter ranges to form
the independent variables. The partial regression coefficients and
intercepts were calculated with the method of least square. The larger
the calculated coefficient is, the more contribution a parameter has to
the discrepancy. If a certain parameter has no significant influence in a
multi-linear regression formula, its coefficient was given the value of



Adjusted R 
Square = 0.832

Fig. 7. Multi-regression analysis results at the building level (F = 57.24) – See Table 2a for parameter IDs (Estimable parameters and ECM control related parameters are
shaded).

Fig. 8. Multi-regression analysis results at the ECM level (F = 32.16) – See Table 2b for parameter IDs (Estimable parameters and ECM control related parameters are shaded).

Fig. 9. Multi-regression analysis results at the zone level (F = 41.59) – See Table 2c for parameter IDs (Estimable parameters and ECM control related parameters are shaded).
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0. A positive coefficient (above blue lines) indicates an overestimation,
while a negative (below blue lines) indicates an underestimation in
the simulated results (Figs. 7–9). The results showed that a parameter
with high influence on simulation results in the sensitivity analysis
does not mean high influence on simulation discrepancy in the regres-
sion analysis.

The two criteria for analyzing the influences of parameters and
their mutual relations were then investigated. The first criterion is
the adjusted determination coefficient (Adjusted R Square), used to
represent the percentage of a dependent variable (energy
simulation discrepancy) that can be explained by the independent
variables (adjustable parameters). In this case study, approxi-
mately 83.2% of the building level energy discrepancy, 81.8% of
the ECM level energy discrepancy, and 80.7% of the zone level
energy discrepancy could be attributed to those adjustable
parameters. The second criterion is the tolerance for the
multicollinearity between the parameters. The smaller the toler-
ance value is, the stronger the multicollinearity appears. The
results also demonstrated that significant adjustable parameters
were all independent at all the three levels (red dots in Figs. 7–9).
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Similar to the conclusion in the sensitivity analysis that there was
no parameter interaction and all the adjustable parameters were
linearly related to the simulation discrepancy. In addition, the sig-
nificance tests (at a 95% confidence level) for assessing statistical
significance of multi linear regression equations and coefficients
were also explored. F-test results (Figs. 7–9) showed the three
multi linear regression equations all had F values larger than the
critical values (Fbuilding = 1.47, FECM = 1.52, Fzone = 1.82), demon-
strating the regression models were statistically significant and
the simulation discrepancies were mainly impacted by the adjusta-
ble parameters. Based on the T-test results except for the parame-
ters of Solar Heat Gain Coefficient (ID# 15), Fresh Air Introduction
Rate (ID# 26), Maximum Zone Wind Speed (ID# 27), Ground
Temperature (ID# 31), and Reference Barometric Pressure (ID#
34) in building level regression, the parameters of Supply-Air-to-
Zone-Air Temperature Delta (ID# 14), Fraction of Convective
Internal Loads (ID# 18), Effective Air Leakage Area (ID# 27) and
Visible Absorptance (ID# 32) in ECM level regression, and the
parameters of Zone Cooling Sizing Factor (ID# 9), Minimum
Surface Convection Heat (ID# 15), Minimum Airflow Fraction
(ID# 20), Delta Adjacent Zone Air Temperature (ID# 24), Airflow
Convergence Tolerance (ID# 27) and Surface Albedo (ID# 31), the
coefficients of other individual parameters were all statistically
significant (green lines in Figs. 7–9), indicating the insignificant
parameters are successfully differentiated from significant parame-
ters (Tables 2a–2c), which account for the simulation discrepancy.

4.7. Simulation discrepancy minimization

Statistically significant parameters were processed by multi-
objective programming to determine the values within value ranges
that could minimize the simulation discrepancies. The energy con-
sumption data from January 1st to March 10th 2013 were used for
model calibration, while the data from March 15th to November
15th 2014 were used for evaluating the performance of multiple-
level simulation calibration (objective 1), and the data from
March 11st to April 28th 2013 were used for evaluating the model
robustness by mixing the ground truth of two ECMs (objective 2)
(Fig. 10). In this case study, hourly simulation was conducted and
Jan 1st – Feb 21st

2013
Feb 22nd – Mar 10th

2013

Multi-objective 
Optimization and Weight 

Determination

Calibration

Mar

Mar

Mar
Objective 2

M
Objective 1

Fig. 10. Data collection periods for energ

Table 3
The convergence results (weights, weighted discrepancy and itera
hourly tolerances (from IPMVP, FEMP and ASHRAE) were used
for evaluating daily MSE and CV (RMSE). For objective 1, one
month was used as the period for calculating the hourly MBE
and CV (RMSE); for objective 2, seven days (one week) were con-
sidered as one period for calculating the hourly MBE and CV
(RMSE). Specifically, the data for calibration (from January 1st to
March 10th) were used for generating solutions and choosing the
weights for discrepancies at three levels. With different prefer-
ences, different combinations of weight values were searched
iteratively until the weighted discrepancies converged (Table 3).

Six possible combinations of weights were tested for building
level preferred optimization, ECM level preferred optimization
and zone level preferred optimization. However, the different pre-
ferences did not converge to the same result in this case study. A
possible reason could be that one level simulation accuracy had a
conflict with another. Since each objective function has its own
parameters that do not exist in another objective function, differ-
ent weight preferences that are assigned to the three functions
may result in different solutions for those parameters. Solutions
are the sets of values for parameters that could minimize either
the objective functions (building level, ECM level, or zone level)
or the weighted objective function. There might be one or multiple
solutions as different combinations of values may achieve the same
results. Based on the results in Table 3, ECM level preferred solu-
tions (3rd combination with the relative preference of ECM
level > zone level > building level) could achieve lower simulation
discrepancy and converge faster. (wbuilding = 0.27, wECM = 0.39;
wzone = 0.34) was selected for further evaluation. Linear program-
ming was then used to find the initial solution. The effective solu-
tions were also searched and the corresponding function outputs
were then compared to conclude which solution could minimize
weighted simulation discrepancy.

To illustrate the difference in estimation of parameters at differ-
ent levels and how they are eventually combined into one model,
the following example is provided. After the initial modeling
(Step 1), for example, if Wall U-factor existed in the lists of influen-
tial parameters for all three levels based on the sensitivity analysis
(Step 2), it was considered to significantly contribute to the accu-
racy of the final model at the building level, ECM level and the zone
Baseline ECM
Bimodal ECM

 11st – Mar 17th

2013
 18th – Mar 24th

2013
 25th – Mar 31st

2013

Apr 1st – Apr 7th

2013 
Apr 15th – Apr 21st

2013 

Apr 8th – Apr 14th

2013 
Apr 22nd – Apr 28th

2013

Evaluation

arch 15th – November 15th

2014

y model calibration and evaluation.

tions) for different combinations of preferred weights.
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level. Since this parameter cannot be calculated by parameter
estimation (Step 3), it is an adjustable parameter and should be
determined by discrepancy analysis (Step 4) and discrepancy mini-
mization (Step 5). After decomposing the discrepancies between
the simulated and actual energy performances to the adjustable
parameters, if Wall U-factor was statistically significant for con-
tributing to the simulation discrepancies at all three levels, its
weight for either of the three levels of simulation discrepancy
can be recognized through a regression analysis. Multi-objective
optimization was then conducted to find the final value of U-factor
that could synergize with other parameters to minimize weighted
simulation discrepancies of the three levels. Its varying values
should be limited within its parameter ranges and are recom-
mended not to be far from the default values set in Energyplus.
5. Validation results and discussion

To evaluate the performance of the calibrated building model at
multiple levels, eight months’ data from March 15th 2014 to
November 15th 2014 were collected for validating multi-level sim-
ulation accuracy, and the results were shown in Figs. 11 and 12.

In general, the calibrated model could simulate long-term
energy consumption with an absolute hourly error (MBE value)
below 8.1% (6.9% for average) at the building level, below 7.8%
(7.1% for average) at the ECM level, and below 8.5% (7.7% for aver-
age) at the zone level for all of the tested months. MBE values were
slightly lower than the CV (RMSE) values. One explanation could be
that simulation overestimation might be compensated by the
underestimation. The variations of the simulation discrepancy
were not significant (12.2% for average at the building level,
11.1% for average at the ECM level and 12.8% for average at the
zone level). All of the CV (RMSE) values were within the tolerances
regulated by the ASHRAE, FEMP and IPMVP. As the evaluation
results (test performance) were consistent with the calibration
results (training performance) in Table 3, the calibrated model
was not overfit. The results also demonstrated the consistency of
calibrated building energy model over time and season.
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Based on the results, the modeled thermal characteristics may
not fit the actual characteristics of the building so well, as the
energy model overestimated the energy consumption at all of the
three levels when there was not much cooling required (March
to May and October to November). However, during the seasons
where cooling was required (May to October), the building level
simulation tended to underestimate the energy consumption, pos-
sibly because the performances of HVAC plants and systems were
overestimated to be more energy efficient than they were in rea-
lity. Meanwhile, ECM level simulation may underestimate the con-
trol inefficiency and it may also lack the consideration of thermal
influences of the adjacent spaces controlled by another AHU.
Zone level simulation assumed to have less space heat gains than
the actual end use demand and was influenced by the over-
estimated HVAC system performance as the outside temperature
increased. Since not all the zones were selected for calibration
and only average zone energy consumption was considered, sim-
ulation results for individual zones may deviate from the measured
energy consumption, resulting in zone level simulation to be
higher in MBE and CV (RMSE) compared to the ECM level and
the building level simulation.

In order to explore whether the energy model calibrated using
ground truth energy data from mixed ECMs, could consistently
simulate energy performance for each ECM, the period from
March 11st to April 30th was selected for evaluation of the second
objective, during which three weeks were operated by the bimodal
ECM in the 14 zones and the rest were operated by the baseline
ECM. The corresponding MBE values and CV (RMSE) values were
calculated at the ECM level and presented for comparing the simu-
lated results with actual energy performance (Fig. 13). It can be
concluded that the hypothesis should be accepted that energy
model calibrated under two ECMs could consistently simulate
actual energy consumption under either ECM independently.

At the ECM level, the differences of averaged MBE between
baseline ECM and bimodal ECM were 0.7% (with the absolute dif-
ference below 1.8% between any pair), and the averaged differ-
ences of CV (RMSE) were 0.4% (with the difference below 1.9%
between any pair), which indicated that the calibrated model
ug Aug-Sep Sep-Oct Oct-Nov 
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Fig. 13. MBE values and CV (RMSE) values for the calibrated model at the ECM level.

Fig. 14. Comparison of simulated temperature and actual temperature for randomly selected four zones.
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was robust enough to the changes resulting from the building
being operated differently.

In order to evaluate the quality of simulation for thermal condi-
tions, four zones in the case study building were randomly
selected. For each zone, the comparisons between simulated aver-
age daily temperatures and actual average daily temperatures from
March 15th to November 15th were presented in Fig. 14. Since all
the points were closely around the line y = x (average absolute
value is 2.1 �C for Zone A, 2.7 �C for Zone B, 3.1 �C for Zone C and
1.9 �C for Zone D), the comparison results demonstrated that the
thermal conditions were well simulated by the calibrated energy
model.

Summarily, the actual calibration process guided by the pro-
posed calibration framework used evidence and statistical learning
steps. Evidence was used to build the energy model and statistical
learning was used to reduce the simulation discrepancy. The pro-
pose calibration framework does not need retraining when
changes are made to building conditions, operations and con-
servation measures; meanwhile it avoids the trial-and-error pro-
cess, which requires significant time, effort and expertise. The
presented framework is a generalizable method, which is not
specific to any building type or building system type. Although
EnergyPlus was used as the simulation program to validate the
calibration method, the method is not designed for EnergyPlus
and could be used with other simulation programs.

However, the study bears certain limitations, which should be
investigated in future research. First, the parameter ranges used
were kept unchanged during the calibration process, which should
be updated continuously to reduce the searching workload and
improve the accuracy of parameter value determination; however,
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this was not within the scope of this paper. Second, in sensitivity
analysis the joint-effects of input parameters on energy simulation
results were not systematically considered because the rankings of
parameters were sufficient to differentiate the influential parame-
ters. Other global sensitivity algorithms such as extended Fourier
Amplitude Sensitivity (EFAST) could be used to investigate the cor-
relations among these parameters. Third, a linear relationship was
assumed between adjustable parameters and simulation discrep-
ancy as a start. The patterns of simulation discrepancies have not
been systematically analyzed. Later, other relationships such as
non-linear, fuzzy or statistical fitting could also be tested. Fourth,
in discrepancy minimization, if there are many common parame-
ters in multiple objectives, it becomes challenging to find the opti-
mum solution that simultaneously minimizes all of the objectives.
In addition, the introduction of more constraints may increase the
difficulty of finding feasible solutions. Other optimization
approaches could also be explored. Fifth, the actual energy data
collection period was only for cooling-dominant seasons, as in
Southern California, cooling is dominant function of an HVAC sys-
tem and the model performance for heating-dominant seasons and
other climate zones should also be studied. Lastly, there are several
thousands of input parameters but relatively a small number of
output results, several solutions may meet the criteria at the same
time and it is difficult to select the appropriate one to determine
the values of input parameters. More targeted criteria are required,
and the energy consumption should be metered at more detailed
levels for more precise energy model calibration.

6. Conclusions

Building energy performance analysis using energy simulations
could help researchers and practitioners to identify relatively opti-
mal energy conservation measures in existing buildings. A well-
calibrated model is crucial to accurately represent a building and
provide confidence and reliability in potential energy savings,
enabled by the conservation measures, especially when field
experiments for testing all ECMs are infeasible. In particular, a
building energy simulation model should have high accuracies at
multiple levels for different purposes. In addition, multiple levels
of accuracies are interconnected and they reflect the level of
approximation of simulation results to measured energy perfor-
mance. However, current calibration methods focus on single-level
simulation accuracy, either at the building level or at the zone
level. Accurate simulation of single level does not necessarily mean
accurate simulations for other levels especially when there are sev-
eral zones and multiple HVAC units.

This paper introduced a multi-level calibration framework to
improve the accuracy of building energy simulation models at
multiple levels. Evidence-available parameters are identified and
linked to the physical building characteristics, system properties
and environmental conditions, while the remaining parameters
are identified as main sources for discrepancies between the simu-
lated and measured energy performances. A classification schema
was created to classify all of the input parameters into hieratical
categories for analyzing and determining the values of the parame-
ters without direct evidence. An optimization solution was used to
minimize discrepancies and achieve simultaneously high calibra-
tion accuracy. The calibration framework followed five steps: (1)
initial energy modeling using available evidence to reproduce
building energy behavior; (2) sensitivity analysis for ranking the
influence of each parameter on energy simulation results at multi-
ple levels; (3) parameter estimation for determining the values of
estimable parameters; (4) discrepancy analysis to explain the dis-
crepancies between simulated and actual energy performances
based on regression fitting; and (5) discrepancy minimization for
determining the values of parameters to minimize the
discrepancies between simulation and measured energy perfor-
mance by multi-objective programming.

A case study was used to evaluate the validity of the proposed
framework. Simulated HVAC-related energy consumption was
compared with the measured HVAC-related energy consumption
of the building. The results showed that MBE and CV (RMSE) for
all of the test weeks were below 8.5% and 13.5%, which demon-
strated that the proposed framework could accurately calibrate
energy simulation model at building level, ECM level and zone
level. Considering the fact that energy simulation is mainly used
to estimate expected energy savings from different energy con-
servation measures (ECMs), the energy model should be robust
to the changes resulting from building being operated under differ-
ent control strategies. In order to assess the credibility of expected
energy savings resulting from buildings being operated differently,
the ground truth energy data used for calibration were collected
for the periods when two different energy conservation measures
were implemented. The calibrated model had less than 2% absolute
difference between the baseline ECM and bimodal ECM for both
MBE and CV (RMSE) at ECM level, demonstrating the robustness
of the calibrated model to predict the performances of both
measures.
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